Pre-class Warm-up

With reference to the picture on the right, what is the sum

$$\sum_{l=1}^{5} f(C_i) \cdot \left(\times_{l} - \times_{l-1} \right)$$

a. a Cauchy sum

called?

b. a Newton sum

c. a Dedekind sum

d. a Riemann sum

e. Some other kind of sum

Midtern Exam 1 on Tuesday next week is in your discussion sossion.

Sections 5.1 and 5.2: double integrals over rectangles

We learn

- Different notations for the double integral
- Interpretation as volume under the graph
- Interpretation as volume swept out by a slice (Cavalieri's principle)
- Proper definition using Riemann sums
- Some theoretical things: continuous implies integrable, bounded with restrict discontinuities implies integrable Fubini's theorem
- How to calculate integrals

Examples: a. Find $(x^2y + y^3 dx)dy$ Area Acy $= \int_{1}^{1} \left[\frac{x^{3}}{3}y + xy^{3} \right]^{1} = \int_{2}^{2} y + 2y^{3} dy$ = [+ = = 8 = 2] Volume of Tamina is & Dy. Alg. For each y, (f(x,y) dx = area of orange slice = A(y) Now (A(y) dy is the volume blue piece,

Cavalieri's Principle a Cross section area A(y) If the horizontal cross sections have the same area, The toro have the same volume. The volume of a solid is the integral of its goss-section area with respect some coordinate forming out of the cross-section

Informal Fubini's theorem.

If dx dy = If dydx

What's wrong with this?
We don't yet know what we mean by the volume under the graph.
We don't have a proper definition of the

We don't have a proper definition of the integral.

2 f(c,j) (x,-x,,)(y,-y,-1) 15 a Riemann sum Riemann sums We say the function f(x,y) is integrable if These Riemann sums -> d for some fixed a as (x, - x,), (4, -4,-1) and for arbitrary Cin Area (x, -x, 1)(4, -41) d is the value of the integral. Regular partition: n equally spaced points.

What we do using Riemann su	ıms				
O O					
We get a definition of the int					
does not depend on the orde	r in which				+
we do x and y.					+
We get a proper definition of	volume				
under the graph.					-
We show that continuous fur	actions are				-
	ictions are				-
integrable.					
We show that continuous fur					
from discontinuities that lie o	on curves				
that are the graphs of functio	ns are				
integrable.					
We prove Fubini's theorem					
	oc of the				
We establish formal propertie	es of the				
integral					