Pre-class Warm-up
With reference to the picture on the right, what is the sum
called?
a. a Cauchy sum
b. a Newton sum
c. a Dedekind sum
d. a Riemann sum
e. Some other kind of sum

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{x_{L}-x_{L-1} \\ \text { gets small }}}^{\lim f\left(c_{i}\right)\left(x_{i}-x_{L-1}\right)}
$$

Midterm Exam 1 on Tues day next week is in your discussion session.

Sections 5.1 and 5.2: double integrals over

 rectangles
We learn

- Different notations for the double integral
- Interpretation as volume under the graph
- Interpretation as volume swept out by a slice (Cavalieri's principle)
- Proper definition using Riemann sums
- Some theoretical things: continuous implies integrable, bounded with restrict discontinuities implies integrable
- Fubini's theorem
- How to calculate integrals

Examples: a. Find $\int_{1}^{2}\left(\int_{-1}^{1} x^{\wedge} 2 y\right.$
b. Find $\iint_{R}^{x \wedge 2 y}+y^{\wedge} 3 d A$
where R is the rectangle $[-1,1] \times[1,2]$

$$
=\{(x, y) \mid x \in[-1,1], y \in[1,2]
$$

c. Find the volume under the graph of $f(x, y)=x^{\wedge} 2 y+y^{\wedge} 3$ above the rectangle $[-1,1] \times[1,2]$

$$
\begin{aligned}
& \text { Examples: a. Find } \left.\int_{1}^{2} \int_{-1}^{1} x^{\wedge} 2 y+y^{\wedge} 3 d x\right) d y \\
& =\int_{1}^{2}\left[\frac{x^{3}}{3} y+x y^{3}\right]_{-1}^{1}=\int_{1}^{2} \frac{2}{3} y+2 y^{3} d y \\
& =\left[\frac{y^{2}}{3}+\frac{1}{2} y^{4}\right]_{1}^{2}=\frac{3}{3}+\frac{15}{2}=8 \frac{1}{2}
\end{aligned}
$$

lamina is $\approx \Delta y \cdot A(y)$
Far each $y, \int_{-1}^{l} f(x, y) d x=$ area of orange slice $=A(y)$
Now $\int_{1}^{2} A(y) d y$ is the volume of blue piece.

Cavalieri's Principle

The volume of a solid is the integral of its aoss-section area with respect same coordinate. pointing out of the cross-section. I

If the horizutal cross-sectuous have the same area, the two have the same volume.

Examples: a. Find $\int_{-1}^{1} \int_{1}^{2} x^{\wedge} 2 y+y^{\wedge} 3 d y d x$

$$
\begin{aligned}
& =\int_{-1}^{1}\left[\frac{x^{2} y^{2}}{2}+\frac{y^{4}}{4}\right]_{1}^{2} d x=\int_{-1}^{1}\left(\frac{3 x^{2}}{2}+\frac{15}{4}\right) d x \\
& =\left[\frac{x^{3}}{2}+\frac{15}{4} x\right]_{-1}^{1}=\frac{1}{2}+\frac{1}{2}+\frac{15}{4}+\frac{15}{4} \\
& \\
& =8 \frac{1}{2}
\end{aligned}
$$

Informal Fubini's theorem.

$$
\iint f d x d y=\iint f d y d x
$$

What's wrong with this?
We don't yet know what we mean by the volume under the graph.
We don't have a proper definition of the integral.

Question:
What is $\int_{1}^{2} \int_{-1}^{1} d x d y$?
a. 0
b. 1
c. 2 J
d. 4
e. $1 / 2$

Riemann sums

$$
\sum f\left(c_{l}\right)\left(x_{L}-x_{t-1}\right)\left(y_{1}-y_{5-1}\right)
$$

is a Riemann sum.

We say the function $f(x, y)$ is integrable if these Riemann sums $\longrightarrow d$ for some fixed d $\operatorname{as}\left(x_{L}-x_{L-1}\right),\left(y_{j}-y y_{-1}\right) \rightarrow 0$ and for arbitrary $c_{i j}$ d is the value of the integral.

- We get a definition of the integral that does not depend on the order in which we do x and y.
- We get a proper definition of volume under the graph.
- We show that continuous functions are integrable.
- We show that continuous functions apart from discontinuities that lie on curves that are the graphs of functions are integrable.
- We prove Fubini's theorem
- We establish formal properties of the integral

